Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Virulence ; 13(1): 1315-1330, 2022 12.
Article in English | MEDLINE | ID: covidwho-20238606

ABSTRACT

Porcine rotavirus (PoRV) is an important pathogen, leading to the occurrence of viral diarrhoea . As the infection displays obvious enterotropism, intestinal mucosal immunity is the significant line of defence against pathogen invasion. Moreover, as lactic acid bacteria (LAB) show acid resistance, bile salt resistance and immune regulation, it is of great significance to develop an oral vaccine. Most traditional plasmid delivery vectors use antibiotic genes as selective markers, easily leading to antibiotic accumulation. Therefore, to select a food-grade marker in genetically engineering food-grade microorganisms is vital. Based on the CRISPR-Cas9D10A system, we constructed a stable auxotrophic Lactobacillus paracasei HLJ-27 (Lactobacillus △Alr HLJ-27) strain. In addition, as many plasmids replicate in the host bacteria, resulting in internal gene deletions. In this study,we used a temperature-sensitive gene editing plasmidto insert the VP4 gene into the genome, yielding the insertion mutant strains VP4/△Alr HLJ-27, VP4/△Alr W56, and VP4/W56. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses. These oral mucosal vaccines have the potential to act as an alternative to the application of antibiotics in the future and induce efficient immune responses against PEDV infection.


Subject(s)
Capsid Proteins , Lactobacillus , Animals , Anti-Bacterial Agents , Capsid Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Lactobacillus/genetics , Rotavirus , Swine
2.
Arch Virol ; 168(5): 149, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2319789

ABSTRACT

Rotavirus group A (RVA) is characterized by molecular and epidemiological diversity. To date, 42 G and 58 P RVA genotypes have been identified, some of which, like P[14], have a zoonotic origin. In this study, we describe the epidemiology of unusual RVA genotypes and the molecular characteristics of P[14] strains. Fecal samples from children ≤ 16 years of age with acute gastroenteritis (AGE) who were hospitalized during 2007-2021 in Greece were tested for RVA by immunochromatography. Positive RVA samples were G and P genotyped, and part of the VP7 and VP4 genes were sequenced by the Sanger method. Epidemiological data were also recorded. Phylogenetic analysis of P[14] was performed using MEGA 11 software. Sixty-two (1.4%) out of 4427 children with RVA AGE were infected with an unusual G (G6/G8/G10) or P (P[6]/P[9]/P[10]/P[11]/P[14]) genotype. Their median (IQR) age was 18.7 (37.3) months, and 67.7% (42/62) were males. None of the children were vaccinated against RVA. P[9] (28/62; 45.2%) was the most common unusual genotype, followed by P[14] (12/62; 19.4%). In the last two years, during the period of the COVID-19 pandemic, an emergence of P[14] was observed (5/12, 41.6%) after an 8-year absence. The highest prevalence of P[14] infection was seen in the spring (91.7%). The combinations G8P[14] (41.7%), G6P[14] (41.7%), and G4P[14] (16.6%) were also detected. Phylogenetic analysis showed a potential evolutionary relationship of three human RVA P[14] strains to a fox strain from Croatia. These findings suggest a possible zoonotic origin of P[14] and interspecies transmission between nondomestic animals and humans, which may lead to new RVA genotypes with unknown severity.


Subject(s)
COVID-19 , Gastroenteritis , Rotavirus Infections , Rotavirus , Male , Animals , Humans , Child , Infant , Female , Rotavirus Infections/epidemiology , Phylogeny , Pandemics , COVID-19/epidemiology , Gastroenteritis/epidemiology , Genotype , Feces , Epidemiologic Studies
3.
BMC Infect Dis ; 23(1): 254, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2298464

ABSTRACT

BACKGROUND: To reduce the burden from the COVID-19 pandemic in the United States, federal and state local governments implemented restrictions such as limitations on gatherings, restaurant dining, and travel, and recommended non-pharmaceutical interventions including physical distancing, mask-wearing, surface disinfection, and increased hand hygiene. Resulting behavioral changes impacted other infectious diseases including enteropathogens such as norovirus and rotavirus, which had fairly regular seasonal patterns prior to the COVID-19 pandemic. The study objective was to project future incidence of norovirus and rotavirus gastroenteritis as contacts resumed and other NPIs are relaxed. METHODS: We fitted compartmental mathematical models to pre-pandemic U.S. surveillance data (2012-2019) for norovirus and rotavirus using maximum likelihood estimation. Then, we projected incidence for 2022-2030 under scenarios where the number of contacts a person has per day varies from70%, 80%, 90%, and full resumption (100%) of pre-pandemic levels. RESULTS: We found that the population susceptibility to both viruses increased between March 2020 and November 2021. The 70-90% contact resumption scenarios led to lower incidence than observed pre-pandemic for both viruses. However, we found a greater than two-fold increase in community incidence relative to the pre-pandemic period under the 100% contact scenarios for both viruses. With rotavirus, for which population immunity is driven partially by vaccination, patterns settled into a new steady state quickly in 2022 under the 70-90% scenarios. For norovirus, for which immunity is relatively short-lasting and only acquired through infection, surged under the 100% contact scenario projection. CONCLUSIONS: These results, which quantify the consequences of population susceptibility build-up, can help public health agencies prepare for potential resurgence of enteric viruses.


Subject(s)
COVID-19 , Caliciviridae Infections , Enterovirus Infections , Gastroenteritis , Norovirus , Rotavirus Infections , Rotavirus , Viruses , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Gastroenteritis/epidemiology , Rotavirus Infections/epidemiology , Enterovirus Infections/epidemiology , Caliciviridae Infections/epidemiology , Models, Theoretical
4.
Food Environ Virol ; 15(2): 176-191, 2023 06.
Article in English | MEDLINE | ID: covidwho-2296583

ABSTRACT

Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Gastroenteritis , Norovirus , RNA Viruses , Rotavirus , Sapovirus , Viruses , Humans , Wastewater , Pandemics , Sewage , Viruses/genetics , Rotavirus/genetics , Norovirus/genetics , Sapovirus/genetics , Enterovirus Infections/epidemiology , Adenoviridae/genetics , Genotype , Phylogeny , Feces
5.
Pediatr Int ; 64(1): e15332, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2273590

ABSTRACT

BACKGROUND: In November 2011, rotavirus (RV) vaccine was launched in Japan as a voluntary vaccination to prevent RV-associated gastroenterocolitis. We examined the characteristics of intussusception following RV vaccination in our two centers. METHODS: We investigated intussusception patients <16 years old from January 2006 to September 2020. Patients were categorized according to the period (before [Group A] or after the introduction of arbitrary RV vaccination [Group B]). The patient characteristics and treatment of intussusception were retrospectively investigated. RESULTS: During the study period, 560 patients (group A, n = 233; group B, n = 327) were identified. The distribution of patients who were 0-6 months old was not significantly different between the groups (group A, n = 12, 5.2%; group B, n = 18, 5.5%). Among these 18 patients in Group B, 7 were vaccinated against RV, and 10 were not. One patient was excluded due to incomplete data. On comparing patients with and without RV vaccination, the mean age at the onset of intussusception was 3.3 ± 0.4 versus 4.0 ± 0.3 months (P = 0.19), the mean interval from the onset to treatment was 7.5 ± 2.4 versus 16.0 ± 2.2 h (P = 0.03), the time of the contrast enema for treatment was 9.1 ± 3.3 versus 7.7 ± 2.8 min (P = 0.76), and the final pressure of the contrast enema was 92.5 ± 4.4 versus 92.2 ± 4.4 cmH2 O (P = 0.97). CONCLUSIONS: Arbitrary RV vaccination did not influence the age distribution of intussusception, and the interval from the onset to treatment was significantly shorter in the patients with RV vaccination than in those without it. Recognizing the presence of intussusception following RV vaccination enables accurate treatment.


Subject(s)
Intussusception , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Infant , Infant, Newborn , Adolescent , Rotavirus Infections/prevention & control , Retrospective Studies , Vaccination
6.
J Appl Microbiol ; 134(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2222665

ABSTRACT

AIMS: We aimed to investigate the prevalence of rotavirus and coronavirus in dipterans that commonly inhabit the environment of dairy farms. METHODS AND RESULTS: We collected 217 insect specimens from nine dairy farms, which were examined through hemi-nested RT-PCR followed by Sanger sequencing in search of VP1 and N genes for rotavirus and bovine coronavirus-BCoV, respectively. With a predominance of Muscidae (152/217 = 70%) 11 families of Diptera were identified. Rotavirus A (RVA) and betacoronavirus (BCoV) were detected in 14.7% (32/217) and 4.6% (10/217) of the dipterans, respectively. Sequencing of the amplicons was possible for 11.5% (25/217) of RVA and 0.5% (1/217) of BCoV, confirming the presence of these pathogens. CONCLUSIONS: Our findings highlight the role of dipterans as carriers of RVA and BCoV of great relevance for public and animal health.


Subject(s)
Cattle Diseases , Diptera , Rotavirus Infections , Rotavirus , Animals , Cattle , Rotavirus/genetics , Betacoronavirus , Farms , Insecta , Feces , Cattle Diseases/epidemiology , Diarrhea/epidemiology , Phylogeny , Genotype
7.
Arch Virol ; 168(2): 36, 2023 Jan 07.
Article in English | MEDLINE | ID: covidwho-2174218

ABSTRACT

Viral pathogens are the primary cause of canine gastroenteritis. However, few structured comprehensive studies on the viral etiology of canine gastroenteritis have been conducted. In this study, 475 rectal swabs collected over three years (2018-2021) from clinical canine gastroenteritis cases were screened for the presence of six major enteric viruses - canine parvovirus 2 (CPV-2), canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), canine coronavirus (CCoV), canine astrovirus (CaAstV), and canine rotavirus (CRV) - by real-time PCR. The most frequently detected virus was CPV-2, which was present in 64.8% of the samples (subtype 2a, 21.1%; 2b, 77.4%; 2c, 1.5%), followed by CDV (8%), CaAstV (7.2%), CCoV (5.9%), and CAdV-2 (4.6%). Two to four of these viruses in different combinations were found in 16.8% of the samples, and CRV was not detected. The complete genome sequences of Indian isolates of CDV, CCoV, and CaAstV were determined for the first time, and phylogenetic analysis was performed. This study highlights the need for routine prophylactic vaccination with the appropriate vaccines. Notably, 70.3% of animals vaccinated with DHPPiL were found to be positive for at least one virus. Hence, regular molecular analysis of the prevalent viruses is crucial for addressing vaccination failures.


Subject(s)
Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Gastroenteritis , Mamastrovirus , Parvoviridae Infections , Parvovirus, Canine , Rotavirus , Animals , Dogs , Phylogeny , Dog Diseases/epidemiology , Gastroenteritis/veterinary , Real-Time Polymerase Chain Reaction , Rotavirus/genetics , Coronavirus, Canine/genetics , Mamastrovirus/genetics , Distemper Virus, Canine/genetics
9.
Commun Dis Intell (2018) ; 462022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2206058

ABSTRACT

Abstract: This report from the Australian Rotavirus Surveillance Program describes the circulating rotavirus genotypes identified in children and adults during the period 1 January to 31 December 2021. During this period, 521 faecal specimens had been referred for rotavirus G- and P- genotype analysis, of which 474 were confirmed as rotavirus positive. Of these, 336/474 were wildtype rotavirus strains and 138/474 were identified as vaccine-like. Of the 336 wildtype samples, 87.5% (n = 294/336) were identified as G8P[8], and were detected in five of the six jurisdictions that provided samples for the reporting period. Two rotavirus outbreaks, located in the Northern Territory and Western Australia, were also attributed to G8P[8]. As with the 2020 reporting period, a low number of stool samples were received for this reporting period as a result of the COVID-19 pandemic. However, an unexpectedly high proportion of samples with unusual genotypes were identified which were potentially zoonotic in nature, including feline G3, P[9], bovine-like G8, P[14], and porcine-like G4, G6, P[1], and P[6]. Ongoing rotavirus surveillance is crucial to identify changes in genotypic patterns and to provide diagnostic laboratories with quality assurance by reporting incidences of wildtype, vaccine-like, or false positive rotavirus results.


Subject(s)
COVID-19 , Gastroenteritis , Rotavirus Infections , Rotavirus , Animals , Cattle , Cats , Humans , Swine , Rotavirus/genetics , Rotavirus Infections/epidemiology , Pandemics , Gastroenteritis/epidemiology , COVID-19/epidemiology , Northern Territory/epidemiology
10.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2200901

ABSTRACT

During the COVID-19 pandemic, a reduction in vaccination coverage of children and adolescents was observed in several countries. The aim of this study was to assess the impact of the pandemic, in the first two years, on human rotavirus vaccine (HRV) coverage in Brazil compared with previous years. The number of doses of HRV administered in the period from January 2015 to December 2021 and its annual vaccination coverage were analyzed. The vaccination coverage decreased to 77.3% in 2020 and to 70.4% in 2021, substantially lower than the minimum that would be expected (89.2%); the decline was more pronounced in the second year of the pandemic despite the fact that in this period, the circulation restrictions were already less tight. Of the five Brazilian macro-regions, the northeast had the largest decline, and the south had the smallest impact on coverage. At the municipal level, less than half of the Brazilian municipalities managed to achieve vaccination coverage above 90% in either pandemic year. Although there was already a downward trend in coverage in the pre-pandemic years, the present study shows that the values recorded in 2020 and 2021 were significantly lower. Monitoring of vaccination coverage in the coming years should be carried out continuously in order to avoid a possible resurgence of rotavirus-induced diarrhea.


Subject(s)
COVID-19 , Rotavirus Vaccines , Rotavirus , Adolescent , Child , Humans , Brazil/epidemiology , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination
11.
Vaccine ; 41(4): 945-954, 2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-2165928

ABSTRACT

BACKGROUND: Rotavirus infection remains an important cause of morbidity and mortality in children. The introduction of vaccination programs in more than 100 countries has contributed to a decrease in hospitalizations and mortality. This study investigates the epidemiological impact of the rotavirus vaccine ROTAVAC® in the Palestinian Territories, the first country to switch from ROTARIX® to this new vaccine. METHODS: Clinical surveillance data was collected fromchildren younger than 5attendingoutpatient clinics throughout Gaza withdiarrhea between 2015 and 2020. The incidence of all-cause diarrhea was assessed using an interrupted time-series approach. Rotavirus prevalence was determined at the Caritas Baby Hospital in the West Bank usingELISA on stool specimen of children younger than 5with diarrhea. Genotyping was performed on 325 randomly selected rotavirus-positive samples from January 2015 through December 2020 using multiplex PCR analysis. RESULTS: Average monthly diarrhea casesdropped by 16.7% annually fromintroduction of rotavirus vaccination in May 2016 to the beginning of the SARS-CoV-2 epidemic in March 2020 for a total of 53%. Case count declines were maintained afterthe switchto ROTAVAC® in October 2018. Rotavirus positivity in stool samples declined by 67.1% over the same period without change followingthe switch to ROTAVAC®. The distribution of predominant genotypes in rotavirus-positive stool samples changed from a pre-vaccination G1P [8] to G9P[8] and G12P[8] during the ROTARIX® period and G2P[4] after the introduction of ROTAVAC®. CONCLUSION: ROTAVAC® has shown epidemiological impact on par with ROTARIX® after its introduction to the national immunization schedule in the Palestinian Territories. A molecular genotype shift from a pre-vaccination predominance of G1P[8] to a current predominance of G2P[4] requires more long-term surveillance.


Subject(s)
COVID-19 , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Infant , Child , Humans , Rotavirus/genetics , Prevalence , Incidence , Arabs , SARS-CoV-2 , Diarrhea/epidemiology , Diarrhea/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/prevention & control , Genotype , Rotavirus Vaccines/therapeutic use , Feces
12.
J Water Health ; 20(11): 1668-1672, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2120972

ABSTRACT

People's hygienic habits greatly affect the spreading rate of enteric viruses. After the COVID-19 pandemic, many people followed announced precautions and improved their hygienic status to protect themselves from SARS-CoV-2 infection. Here, we studied if this indirectly affected the prevalence of enteric viruses in Egypt. A total of 21 samples (one sample per week) were collected from the Zenin wastewater treatment plant (WWTP) through the period between August 2021 and March 2022. Detection of adenovirus, hepatitis A virus (HAV), and rotavirus showed their presence in 66, 14.3, and 9.5% of the collected samples, respectively. Comparing those percentages to previously published data concerned with the detection of the same viruses from the same WWTP or others revealed a remarkable decrease in the prevalence of the three viruses after the COVID-19 pandemic. This allows the conclusion that safety precautions against SARS-CoV-2 lead indirectly to a reduction of adenovirus, HAV, and rotavirus prevalence rates.


Subject(s)
COVID-19 , Rotavirus , Humans , Wastewater , COVID-19/epidemiology , Egypt/epidemiology , Prevalence , Pandemics , SARS-CoV-2 , Adenoviridae
13.
Bol. malariol. salud ambient ; 62(4): 714-720, 2022. tab
Article in Spanish | WHO COVID, LILACS (Americas) | ID: covidwho-2091770

ABSTRACT

Las enfermedades diarreicas constituyen la principal causa de morbimortalidad en niños menores de cinco años, con alrededor de 1.700 millones de casos y 1,5 millones de muertes por año a nivel mundial. Para el año 2010, en la Sierra de Ecuador se registró un alto porcentaje de infantes fallecidos a causa de enfermedades diarreicas agudas (EDA), incluyendo la provincia de Chimborazo; mientras que, para el año 2016, se registraron en Ecuador 590.523 casos de EDA, siendo más afectados los niños de sectores de mayor pobreza. Se realizó un estudio descriptivo en pacientes pediátricos con episodios diarreicos que acudieron a centros de salud de los cantones rurales de la provincia Chimborazo. Se realizó análisis coprológico y coproparasitológico en 258 muestras; se identificaron bacterias enteropatógenas mediante pruebas bioquímicas y de susceptibilidad antimicrobiana, se realizó diagnóstico parasitológico mediante análisis macroscópico y microscópico y para detección de virus se emplearon pruebas inmunológicas. Se observó un mayor número de casos de EDA en los cantones Alausí (50%) y Chunchi (19%). De los pacientes con EDA, los rotavirus son el principal agente etiológico aislado (24,8%), seguido por Shigella (17,8%); mientras que Giardia intestinalis (8,5%) y Salmonella (10,1%) son los microorganismos que se aislaron con menor frecuencia en las muestras. Los resultados del presente estudio, permiten tener un panorama etiológico de las EDA en la provincia de Chimborazo y contribuir en la vigilancia epidemiológica, ejecución de programas sanitarios y de vacunación, para disminuir la vulnerabilidad de la población infantil ante dichas infecciones(AU)


Diarrheal diseases are the main cause of morbidity and mortality in children under five years of age, with around 1.7 billion cases and 1.5 million deaths per year worldwide. For the year 2010, in the Sierra de Ecuador a high percentage of infants died due to acute diarrheal diseases (ADD), including the province of Chimborazo; while, for the year 2016, 590,523 cases of ADD were registered in Ecuador, with children from the poorest sectors being more affected. A descriptive study was carried out in pediatric patients with diarrheal episodes who attended health centers in the rural cantons of Chimborazo province. Coprological and coproparasitological analysis was performed on 258 samples; Enteropathogenic bacteria were identified by biochemical and antimicrobial susceptibility tests, a parasitological diagnosis was made by macroscopic and microscopic analysis, and immunological tests were used to detect viruses. A greater number of ADD cases was observed in the Alausí (50%) and Chunchi (19%) cantons. Of patients with ADD, rotaviruses are the main etiological agent isolated (24.8%), followed by Shigella (17.8%); while Giardia intestinalis (8.5%) and Salmonella (10.1%) are the microorganisms that were isolated less frequently in the samples. The results of this study allow us to have an etiological panorama of EDA in the province of Chimborazo and contribute to epidemiological surveillance, execution of health and vaccination programs, to reduce the vulnerability of the child population to these infections(AU)


Subject(s)
Humans , Male , Female , Infant, Newborn , Infant , Child, Preschool , Indicators of Morbidity and Mortality , Diarrhea, Infantile/etiology , Salmonella , Shigella , Bacteria , Giardia lamblia , Rotavirus , Epidemiological Monitoring
14.
Food Environ Virol ; 14(4): 401-409, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2048597

ABSTRACT

The pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still impacting not only on human health but also all economic activities, especially in those related to tourism. In this study, in order to characterize the presence of SARS-CoV-2 in a hot spring park in Uruguay, swimming pools water, wastewater, and surface water from this area were analyzed by quantitative PCR. Wastewater from Salto city located next to the hydrothermal spring area was also evaluated as well as the presence of Rotavirus (RV). Overall, SARS-CoV-2 was detected in 13% (13/102) of the analyzed samples. Moreover, this virus was not detected in any of the samples from the swimming pools water and was present in 18% (3/17) of wastewater samples from the hotels area showing the same trend between the titer of SARS-CoV-2 and the number of infected people in Salto city. SARS-CoV-2 was also detected in wastewater samples (32% (11/34)) from Salto city, detecting the first positive sample when 105 persons were positive for SARS-CoV-2. Rotavirus was detected only in 10% (2/24) of the wastewater samples analyzed in months when partial lockdown measures were taken, however, this virus was detected in nearly all wastewater samples analyzed when social distancing measures and partial lockdown were relaxed. Wastewater results confirmed the advantages of using the detection and quantification of viruses in this matrix in order to evaluate the presence of these viruses in the population, highlighting the usefulness of this approach to define and apply social distancing. This study suggests that waters from swimming pools are not a source of infection for SARS-CoV-2, although more studies are needed including infectivity assays in order to confirm this statement.


Subject(s)
COVID-19 , Hot Springs , Rotavirus , Humans , SARS-CoV-2 , Rotavirus/genetics , Wastewater , Water , Communicable Disease Control
15.
J Virol ; 96(17): e0107422, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2038239

ABSTRACT

Rotavirus (RV) viroplasms are cytosolic inclusions where both virus genome replication and primary steps of virus progeny assembly take place. A stabilized microtubule cytoskeleton and lipid droplets are required for the viroplasm formation, which involves several virus proteins. The viral spike protein VP4 has not previously been shown to have a direct role in viroplasm formation. However, it is involved with virus-cell attachment, endocytic internalization, and virion morphogenesis. Moreover, VP4 interacts with actin cytoskeleton components, mainly in processes involving virus entrance and egress, and thereby may have an indirect role in viroplasm formation. In this study, we used reverse genetics to construct a recombinant RV, rRV/VP4-BAP, that contains a biotin acceptor peptide (BAP) in the K145-G150 loop of the VP4 lectin domain, permitting live monitoring. The recombinant virus was replication competent but showed a reduced fitness. We demonstrate that rRV/VP4-BAP infection, as opposed to rRV/wt infection, did not lead to a reorganized actin cytoskeleton as viroplasms formed were insensitive to drugs that depolymerize actin and inhibit myosin. Moreover, wild-type (wt) VP4, but not VP4-BAP, appeared to associate with actin filaments. Similarly, VP4 in coexpression with NSP5 and NSP2 induced a significant increase in the number of viroplasm-like structures. Interestingly, a small peptide mimicking loop K145-G150 rescued the phenotype of rRV/VP4-BAP by increasing its ability to form viroplasms and hence improve virus progeny formation. Collectively, these results provide a direct link between VP4 and the actin cytoskeleton to catalyze viroplasm assembly. IMPORTANCE The spike protein VP4 participates in diverse steps of the rotavirus (RV) life cycle, including virus-cell attachment, internalization, modulation of endocytosis, virion morphogenesis, and virus egress. Using reverse genetics, we constructed for the first time a recombinant RV, rRV/VP4-BAP, harboring a heterologous peptide in the lectin domain (loop K145-G150) of VP4. The rRV/VP4-BAP was replication competent but with reduced fitness due to a defect in the ability to reorganize the actin cytoskeleton, which affected the efficiency of viroplasm assembly. This defect was rescued by adding a permeable small-peptide mimicking the wild-type VP4 loop K145-G150. In addition to revealing a new role of VP4, our findings suggest that rRV harboring an engineered VP4 could be used as a new dual vaccination platform providing immunity against RV and additional heterologous antigens.


Subject(s)
Actin Cytoskeleton , Capsid Proteins , Rotavirus , Actin Cytoskeleton/metabolism , Capsid Proteins/metabolism , Humans , Lectins , Reverse Genetics , Rotavirus/genetics , Rotavirus/physiology , Rotavirus Infections , Viral Replication Compartments , Virus Replication
16.
Int J Infect Dis ; 123: 52-53, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2031338

ABSTRACT

We identified an additional case of documented Rotavirus meningitis in an adult with full medical history. A previously healthy 37-year-old patient presented herself for transient aphasia associated with fever and headaches at the end of a one-week history of gastroenteritis. Cerebrospinal fluid (CSF) analysis revealed lymphocytic meningitis, and treatment with aciclovir was initiated. Rotavirus A reverse transcription-polymerase chain reaction (RT-PCR) was positive in CSF and the patient's stools in favor of Rotavirus meningitis. Testing for other viruses was negative. Magnetic resonance imaging (MRI) showed no signs of encephalitis. Aphasia was resolutive in less than 12 hours, and no neurological symptoms relapsed. All symptoms evolved favorably despite aciclovir discontinuation. Viral sequencing methods have recently identified unexpected viruses as potential causative agents in meningitis, including Rotavirus. We confirm the detectability of Rotavirus in the analysis of CSF in the context of Rotavirus gastroenteritis in an adult. This case suggests postviral headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) syndrome may be linked to previously undetected direct viral infection of the central nervous system. Therefore, clinicians should consider Rotavirus meningitis in diagnosing meningitis associated with gastroenteritis in adults.


Subject(s)
Aphasia , Gastroenteritis , Meningitis , Rotavirus , Acyclovir , Adult , Aphasia/complications , Gastroenteritis/complications , Gastroenteritis/diagnosis , Headache/cerebrospinal fluid , Headache/diagnosis , Headache/etiology , Humans , Meningitis/complications
17.
Viruses ; 14(8)2022 08 20.
Article in English | MEDLINE | ID: covidwho-2024295

ABSTRACT

Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MßCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MßCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.


Subject(s)
Blood Group Antigens , Rotavirus Infections , Rotavirus , Animals , Blood Group Antigens/metabolism , Cholesterol/metabolism , Humans , Sialic Acids/metabolism , Swine
18.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: covidwho-2010309

ABSTRACT

Porcine viral diarrhea diseases affect the swine industry, resulting in significant economic losses. Porcine epidemic diarrhea virus (PEDV) genotypes G1 and G2, and groups A and C of the porcine rotavirus, are major etiological agents of severe gastroenteritis and profuse diarrhea, particularly among piglets, with mortality rates of up to 100%. Based on the high prevalence rate and frequent co-infection of PEDV, RVA, and RVC, close monitoring is necessary to avoid greater economic losses. We have developed a multiplex TaqMan probe-based real-time PCR for the rapid simultaneous detection and differentiation of PEDV subtypes G1 and G2, RVA, and RVC. This test is highly sensitive, as the detection limits were 20 and 100 copies/µL for the G1 and G2 subtypes of PEDV, respectively, and 50 copies/µL for RVA and RVC, respectively. Eighty-eight swine clinical samples were used to evaluate this new test. The results were 100% in concordance with the standard methods. Since reassortment between porcine and human rotaviruses has been reported, this multiplex test not only provides a basis for the management of swine diarrheal viruses, but also has the potential to impact public health as well.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Rotavirus , Swine Diseases , Animals , Coronavirus Infections/veterinary , Diarrhea/diagnosis , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Rotavirus/genetics , Rotavirus/isolation & purification , Sensitivity and Specificity , Swine , Swine Diseases/virology
19.
Viruses ; 14(8)2022 08 09.
Article in English | MEDLINE | ID: covidwho-1979417

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that causes acute diarrhea, vomiting, dehydration, and a high mortality rate in neonatal piglets. In recent years, PEDV has been associated with co-infections with other swine enteric viruses, including porcine rotavirus (PoRV), resulting in increased mortality among newborn piglets. In this paper, we developed a bivalent vaccine against PEDV and PoRV by constructing a recombinant PEDV encoding PoRV VP7 (rPEDV-PoRV-VP7). The recombinant virus was constructed by replacing the entire open reading frame 3 (ORF3) in the genome of an attenuated PEDV strain YN150 with the PoRV VP7 gene using reverse genetic systems. Similar plaque morphology and replication kinetics were observed in Vero cells with the recombinant PEDV compared to the wild-type PEDV. It is noteworthy that the VP7 protein could be expressed stably in rPEDV-PoRV-VP7-infected cells. To evaluate the immunogenicity and safety of rPEDV-PoRV-VP7, 10-day-old piglets were vaccinated with the recombinant virus. After inoculation, no piglet displayed clinical symptoms such as vomiting, diarrhea, or anorexia. The PoRV VP7- and PEDV spike-specific IgG in serum and IgA in saliva were detected in piglets after rPEDV-PoRV-VP7 vaccination. Moreover, both PoRV and PEDV neutralizing antibodies were produced simultaneously in the inoculated piglets. Collectively, we engineered a recombinant PEDV expressing PoRV VP7 that could be used as an effective bivalent vaccine against PEDV and PoRV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Chlorocebus aethiops , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Porcine epidemic diarrhea virus/genetics , Rotavirus , Swine , Vaccines, Combined , Vero Cells , Vomiting
20.
Lancet Infect Dis ; 22(8): 1191-1199, 2022 08.
Article in English | MEDLINE | ID: covidwho-1972393

ABSTRACT

BACKGROUND: Rotavirus is the leading cause of severe dehydrating gastroenteritis among children younger than 5 years in low-income and middle-income countries. Two vaccines-Rotavac and Rotasiil-are used in routine immunisation in India. The safety and immunogenicity of these vaccines administered in a mixed regimen is not documented. We therefore aimed to compare the safety and seroresponse of recipients of a mixed regimen versus a single regimen. METHODS: We did a multicentre, open-label, randomised, controlled, phase 4, non-inferiority trial at two sites in India. We recruited healthy infants aged 6-8 weeks. Infants with systemic disorders, weight-for-height Z scores of less than minus three SDs, or a history of persistent diarrhoea were excluded. Eligible infants were randomly allocated to six groups in equal numbers to receive either the single vaccine regimen (ie, Rotavac-Rotavac-Rotavac [group 1] or Rotasiil-Rotasiil-Rotasiil [group 2]) or the mixed vaccine regimen (ie, Rotavac-Rotasiil-Rotavac [group 3], Rotasiil-Rotavac-Rotasiil [group 4], Rotavac-Rotasiil-Rotasiil [group 5], or Rotasiil-Rotavac-Rotavac [group 6]). Randomisation was done using an online software by site in blocks of at least 12. The primary outcome was seroresponse to rotavirus vaccine, measured using rotavirus-specific serum IgA antibodies 4 weeks after the third dose. The seroresponse rates were compared between recipients of the four mixed vaccine regimens (consisting of various combinations of Rotavac and Rotasiil) with recipients of the single vaccine regimens (consisting of Rotavac or Rotasiil only for all three doses). The non-inferiority margin was set at 10%. Safety follow-ups were done for the duration of study participation. This trial was registered with the Clinical Trials Registry India, number CTRI/2018/08/015317. FINDINGS: Between March 25, 2019, and Jan 15, 2020, a total of 1979 eligible infants were randomly assigned to receive a single vaccine regimen (n=659; 329 in group 1 and 330 in group 2) or a mixed vaccine regimen (n=1320; 329 each in groups 3 and 4, and 331 each in groups 5 and 6). All eligible participants received the first dose, 1925 (97·3%) of 1979 received the second dose, and 1894 (95·7%) received all three doses of vaccine. 1852 (93·6%) of 1979 participants completed the follow-up. The immunogenicity analysis consisted of 1839 infants (1238 [67·3%] in the mixed vaccine regimen and 601 [32·7%] in the single vaccine regimen; 13 samples were insufficient in quantity) who completed vaccination and provided post-vaccination sera. The seroresponse rate in the mixed vaccine regimen group (33·5% [95% CI 30·9-36·2]) was non-inferior compared with the single vaccine regimen group (29·6% [26·1-33·4]); the seroresponse rate difference was 3·9% (95% CI -0·7 to 8·3). The proportion of participants with any type of solicited adverse events was 90·9% (95% CI 88·4-93·0) in the single vaccine regimen group and 91·1% (89·5-92·6) in the mixed vaccine regimen group. No vaccine-related serious adverse events or intussusception were reported during the study. INTERPRETATION: Rotavac and Rotasiil can be safely used in an interchangeable manner for routine immunisation since the seroresponse was non-inferior in the mixed vaccine regimen compared with the single vaccine regimen. These results allow for flexibility in administering the vaccines, helping to overcome vaccine shortages and supply chain issues, and targeting migrant populations easily. FUNDING: Ministry of Health and Family Welfare, Government of India. TRANSLATION: For the Hindi translation of the abstract see Supplementary Materials section.


Subject(s)
Gastroenteritis , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Antibodies, Viral , Child , Gastroenteritis/prevention & control , Humans , Immunogenicity, Vaccine , Immunoglobulin A , Infant , Rotavirus Infections/drug therapy , Rotavirus Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL